大型网站架构系列:负载均衡详解(下)
该方式中Director将客户请求分配到不同的Real Server,Real Server处理请求后直接回应给用户,这样Director就只处理客户机与服务器的一半连接,极大地提高了Director的调度处理能力,使集群系统能容纳更多的节点数。另外TUN方式中的Real Server可以在任何LAN或WAN上运行,这样可以构筑跨地域的集群,其应对灾难的能力也更强,但是服务器需要为IP封装付出一定的资源开销,而且后端的Real Server必须是支持IP Tunneling的操作系统。 3.3.3LVS/TUN方式的负载均衡集群 DR是指Direct Routing,它的转发流程是:
构架一个最简单的LVS/DR方式的负载均衡集群Real Server和Director都在同一个物理网段中,Director的网卡IP是192.168.0.253,再绑定另一个IP: 192.168.0.254作为对外界的virtual IP,外界客户通过该IP来访问整个集群系统。Real Server在lo上绑定IP:192.168.0.254,同时加入相应的路由。 LVS/DR方式与前面的LVS/TUN方式有些类似,前台的Director机器也是只需要接收和调度外界的请求,而不需要负责返回这些请求的反馈结果,所以能够负载更多的Real Server,提高Director的调度处理能力,使集群系统容纳更多的Real Server。但LVS/DR需要改写请求报文的MAC地址,所以所有服务器必须在同一物理网段内。 3.3架构 LVS架设的服务器集群系统有三个部分组成:最前端的负载均衡层(Loader Balancer),中间的服务器群组层,用Server Array表示,最底层的数据共享存储层,用Shared Storage表示。在用户看来所有的应用都是透明的,用户只是在使用一个虚拟服务器提供的高性能服务。 LVS的体系架构如图: LVS的各个层次的详细介绍: Load Balancer层:位于整个集群系统的最前端,有一台或者多台负载调度器(Director Server)组成,LVS模块就安装在Director Server上,而Director的主要作用类似于一个路由器,它含有完成LVS功能所设定的路由表,通过这些路由表把用户的请求分发给Server Array层的应用服务器(Real Server)上。同时,在Director Server上还要安装对Real Server服务的监控模块Ldirectord,此模块用于监测各个Real Server服务的健康状况。在Real Server不可用时把它从LVS路由表中剔除,恢复时重新加入。 Server Array层:由一组实际运行应用服务的机器组成,Real Server可以是WEB服务器、MAIL服务器、FTP服务器、DNS服务器、视频服务器中的一个或者多个,每个Real Server之间通过高速的LAN或分布在各地的WAN相连接。在实际的应用中,Director Server也可以同时兼任Real Server的角色。 Shared Storage层:是为所有Real Server提供共享存储空间和内容一致性的存储区域,在物理上,一般有磁盘阵列设备组成,为了提供内容的一致性,一般可以通过NFS网络文件系统共享数 据,但是NFS在繁忙的业务系统中,性能并不是很好,此时可以采用集群文件系统,例如Red hat的GFS文件系统,oracle提供的OCFS2文件系统等。 从整个LVS结构可以看出,Director Server是整个LVS的核心,目前,用于Director Server的操作系统只能是Linux和FreeBSD,linux2.6内核不用任何设置就可以支持LVS功能,而FreeBSD作为 Director Server的应用还不是很多,性能也不是很好。对于Real Server,几乎可以是所有的系统平台,Linux、windows、Solaris、AIX、BSD系列都能很好的支持。 3.4均衡策略 LVS默认支持八种负载均衡策略,简述如下: 3.4.1.轮询调度(Round Robin) 调度器通过“轮询”调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。 3.4.2.加权轮询(Weighted Round Robin) 调度器通过“加权轮询”调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器能处理更多的访问流量。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。 3.4.3.最少链接(Least Connections) 调度器通过“最少连接”调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。如果集群系统的真实服务器具有相近的系统性能,采用“最小连接”调度算法可以较好地均衡负载。 3.4.4.加权最少链接(Weighted Least Connections) 在集群系统中的服务器性能差异较大的情况下,调度器采用“加权最少链接”调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。 3.4.5.基于局部性的最少链接(Locality-Based Least Connections) “基于局部性的最少链接”调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器是可用的且没有超载,将请求发送到该服务器;若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用“最少链接” 的原则选出一个可用的服务器,将请求发送到该服务器。 3.4.6.带复制的基于局部性最少链接(Locality-Based Least Connections with Replication) “带复制的基于局部性最少链接”调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。它与LBLC算法的不同之处是它要维护从一个目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。该算法根据请求的目标IP地址找出该目标IP地址对应的服务器组,按“最小连接”原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器;若服务器超载,则按“最小连接”原则从这个集群中选出一台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的程度。 3.4.7.目标地址散列(Destination Hashing) “目标地址散列”调度算法根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。 3.4.8.源地址散列(Source Hashing) “源地址散列”调度算法根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。 除具备以上负载均衡算法外,还可以自定义均衡策略。 3.5场景 一般作为入口负载均衡或内部负载均衡,结合反向代理服务器使用。相关架构可参考Ngnix场景架构。 4、HaProxy负载均衡 (编辑:应用网_丽江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |