周鸿祎:错过了O2O,这一波人工智能你还要错过吗?
360net 支持多机多卡(360 人工智能研究院院长颜水成:多台机器上多块 gpu 一起训练大数据),可以用 100 张卡或者几百张卡连在一起对深度学习进行训练,同时它还具有高度的兼容性和可扩展性,这意味着将来我们还可以吸纳其他的深度学习模块,来减少开发所需要的时间。对我们的人工智能业务而言,360net 是至关重要的根基。
360 的人脸分析系统已经被应用到 360 手机、儿童手表、行车记录仪上。此外,线上搜索也在一步步配置人脸分析技术。人脸分析系统可以对性别、年龄、表情等进行分析,当下直播行业的火热,让这套系统的前景非常可观。 众所周知,在人脸分析过程中,准确定位人脸上的关键点是验证技术的一个标准,我们已经把这套技术应用到了 360 的产品当中。未来,360 还将进一步提升人脸分析的准确度,这一切的基础就是大量图像数据的积累。
我们曾经招募了一个计算机视觉团队,他们来到 360 之后,主要负责车辆环境感知方面的研究,主要是物体的分类、检测和分割。这是 360 对无人驾驶汽车的布局,通过技术实现车辆和行人之间的精确定位,可以更好地辅助驾驶。 试想一下,在城市环境中,汽车可以自动进行车道线的检测,同时预计出距离红绿灯以及交通摄像头的距离,保证汽车的安全。而在检测出可行驶区域之后,就可以准确地预测道路车辆可移动的轨迹和范围,这对于车的路线预判和选择有巨大的价值。 当然,我对人工智能的设想建立在泛安全的基础之上。这里所说的泛安全指两个方面:传统的线上安全和线下安全。线上安全处理的主要是大数据方面,线下安全则是人与智能硬件的交互。我们把信息传递给智能硬件之后,智能硬件要能理解我们的意图,同时要把它的信息反馈回来。 安全是基础,只有在安全的基础上,我们才有可能考虑舒适、便捷的人工智能式生活。所以,360 首先还是要利用 IOT 技术解决人们的家居安全和出行安全。对于做安全起家的 360 来说,人工智能是一个更适合我们的方向。 当手机行业热潮来临的时候,我们视而不见。 当 O2O 模式大行其道的时候,我们依然不为所动。 但是,当人工智能的概念进入我视线的那一刻,我的第一个想法就是要抓住人工智能这波浪潮,并为之肝脑涂地,在所不惜。 (编辑:应用网_丽江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |