机器学习如何提高物联网应用的安全性?
发布时间:2021-12-24 13:35:19 所属栏目:安全 来源:互联网
导读:物联网世界已经触手可及,但是随之而来的有好的一面,也有坏的一面。机器学习可以保护支持IoT的设备免受网络安全威胁。 随着数字革命的发展,许多个人和商用设备通过Internet访问变得智能。建立物联网(IoT)网络为消费者和企业都提供了无数的优势,但同时也带
物联网世界已经触手可及,但是随之而来的有好的一面,也有坏的一面。机器学习可以保护支持IoT的设备免受网络安全威胁。 随着数字革命的发展,许多个人和商用设备通过Internet访问变得“智能”。建立物联网(IoT)网络为消费者和企业都提供了无数的优势,但同时也带来了新的网络安全漏洞。许多IoT设备生产商缺乏网络安全方面的经验和知识,即使IoT设备以比以往任何时候都更多、更详细、更频繁地收集敏感的个人数据。 机器学习(ML)涵盖了许多与人工智能相关的建模技术。使用统计数据,机器学习模型可以通过识别重要特征来预测任何数字数据集的结果。可以在庞大、复杂的数据集上训练模型;他们也可以继续自动改进,而无需软件更新或监督。 ML应用的经典示例包括处理语音命令(例如Siri或Alexa),或在图像中搜索特征(例如特定的面孔或某些动物)。在许多基于文本的搜索算法失败的地方,ML能够隔离像素和音素中的非常规模式以找到含义。 ML可以通过变化的参数快速调整模型,使IoT安全系统能够在变化的环境中进行实时调整。技术领导者已将ML应用于一般的网络安全实践; Google使用ML保护Android系统,而Apple使用ML通过面部识别保护您的手机。 ML还证明它可以识别应用程序和软件中的恶意代码。 ML在已知攻击类型和未知攻击类型的情况下都可以提供帮助。对于已知的攻击,ML可以通过从攻击示例中学习模式来预测某些事件是否是攻击的一部分。为了应对诸如分布式拒绝服务(DDoS)之类的日常广泛攻击,已经创建了ML模型,该模型可以预测> 99.9%的DDoS攻击。 (编辑:应用网_丽江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |