[Python数据分析]新股破板买入,赚钱几率如何?
发布时间:2016-11-01 03:14:50 所属栏目:教程 来源:站长网
导读:副标题#e# 这是本人一直比较好奇的问题,网上没搜到,最近在看python数据分析,正好自己动手做一下试试。作者对于python是零基础,需要从头学起。 在写本文时,作者也没有完成这个小分析目标,边学边做吧。 =======================
运行index和columns,果然date是index: ![]() >>> df.columns Index(['open', 'high', 'close', 'low', 'volume', 'price_change', 'p_change', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20', 'turnover'], dtype='object') >>> df.index Index(['2016-10-28', '2016-10-27', '2016-10-26', '2016-10-25', '2016-10-24', '2016-10-21', '2016-10-20', '2016-10-19', '2016-10-18', '2016-10-17', '2016-10-14', '2016-10-13', '2016-10-12', '2016-10-11', '2016-10-10', '2016-09-30', '2016-09-29', '2016-09-28', '2016-09-27', '2016-09-26', '2016-09-23', '2016-09-22', '2016-09-21', '2016-09-20', '2016-09-19', '2016-09-14', '2016-09-13', '2016-09-12', '2016-09-09', '2016-09-08', '2016-09-07', '2016-09-06', '2016-09-05', '2016-09-02', '2016-09-01', '2016-08-31', '2016-08-30', '2016-08-29', '2016-08-26', '2016-08-25', '2016-08-24', '2016-08-23', '2016-08-22', '2016-08-19', '2016-08-18', '2016-08-17', '2016-08-16', '2016-08-15', '2016-08-12', '2016-08-11', '2016-08-10', '2016-08-09', '2016-08-08', '2016-08-05', '2016-08-04', '2016-08-03', '2016-08-02', '2016-08-01', '2016-07-29', '2016-07-28', '2016-07-27', '2016-07-26', '2016-07-25', '2016-07-22', '2016-07-21', '2016-07-20', '2016-07-19', '2016-07-18', '2016-07-15', '2016-07-14', '2016-07-13', '2016-07-12', '2016-07-11', '2016-07-08', '2016-07-07', '2016-07-06', '2016-07-05', '2016-07-04', '2016-07-01', '2016-06-30', '2016-06-29', '2016-06-28', '2016-06-27', '2016-06-24', '2016-06-23', '2016-06-22', '2016-06-21', '2016-06-20', '2016-06-17', '2016-06-16', '2016-06-15', '2016-06-14', '2016-06-13', '2016-06-08', '2016-06-07', '2016-06-06', '2016-06-03'], dtype='object', name='date')View Code 所以选取列的语句应该是: df=df[['open','close','p_change']] 结果如下: ![]() >>> df=df[['open','close','p_change']] >>> df open close p_change date 2016-10-28 82.50 81.53 -0.69 2016-10-27 82.30 82.19 0.29 2016-10-26 82.04 81.99 -0.13 2016-10-25 82.68 82.09 -1.07 2016-10-24 78.98 83.00 4.97 2016-10-21 79.19 79.08 -0.21 2016-10-20 78.50 79.25 0.95 2016-10-19 80.60 78.49 -1.59 2016-10-18 77.72 79.77 2.26 2016-10-17 78.60 78.01 -1.35 2016-10-14 79.42 79.00 -0.18 2016-10-13 78.85 79.15 0.23 2016-10-12 77.17 78.95 1.15 2016-10-11 77.95 78.07 0.06 2016-10-10 72.93 78.03 7.01 2016-09-30 73.08 72.90 -0.20 2016-09-29 73.18 73.46 0.07 2016-09-28 73.25 73.37 0.14 2016-09-27 72.02 73.30 1.08 2016-09-26 76.24 72.51 -4.94 2016-09-23 78.18 76.31 -2.04 2016-09-22 79.10 77.90 -0.99 2016-09-21 79.10 78.67 -1.21 2016-09-20 81.60 79.64 -1.33 2016-09-19 80.56 80.71 0.15 2016-09-14 81.80 80.57 -4.13 2016-09-13 86.20 83.99 -2.54 2016-09-12 82.50 86.19 1.83 2016-09-09 83.78 84.66 1.14 2016-09-08 82.50 83.71 1.09 ... ... ... ... 2016-07-18 100.00 97.17 -3.68 2016-07-15 100.50 100.90 1.18 2016-07-14 98.00 99.73 0.88 2016-07-13 99.00 98.87 -1.64 2016-07-12 96.96 100.51 1.14 2016-07-11 110.00 99.38 -10.00 2016-07-08 111.51 110.47 -2.86 2016-07-07 111.12 113.71 0.85 2016-07-06 114.00 112.75 -2.53 2016-07-05 110.11 115.63 4.76 2016-07-04 111.89 110.46 -1.21 2016-07-01 111.00 111.82 -3.67 2016-06-30 111.00 116.08 10.00 2016-06-29 105.53 105.53 10.00 2016-06-28 95.94 95.94 10.00 2016-06-27 87.22 87.22 10.00 2016-06-24 79.29 79.29 10.00 2016-06-23 72.08 72.08 9.99 2016-06-22 65.53 65.53 10.01 2016-06-21 59.57 59.57 10.01 2016-06-20 54.15 54.15 9.99 2016-06-17 49.23 49.23 10.01 2016-06-16 44.75 44.75 10.01 2016-06-15 40.68 40.68 10.01 2016-06-14 36.98 36.98 9.99 2016-06-13 33.62 33.62 10.01 2016-06-08 30.56 30.56 10.01 2016-06-07 27.78 27.78 10.02 2016-06-06 25.25 25.25 10.02 2016-06-03 22.95 22.95 43.98 [97 rows x 3 columns]View Code 现在我们已经取得了过去半年新上市的股票和他们上市后的数据。 ----- 第三步:如何筛选出破板后三十天的数据,并汇总。 (编辑:应用网_丽江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |