加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_丽江站长网 (http://www.0888zz.com/)- 科技、建站、数据工具、云上网络、机器学习!
当前位置: 首页 > 运营中心 > 网站设计 > 佳作 > 正文

大唐电信集团陈山枝:发展5G的分析与建议

发布时间:2016-10-29 07:04:22 所属栏目:佳作 来源:佚名
导读:副标题#e# 1、引言 无线移动通信在20多年里得到了飞速的发展,给人们的生活、学习和工作方式以及政治、经济、社会等各方面都带来了巨大的影响。20世纪末,中国提出的TD-SCDMA被国际电信联盟(ITU)接纳成为三大3G国际标准之一,实现了中国通信历史上的百年突

移动通信技术更新约10年一代。1G的目的是要解决语音通信,但语音质量与安全性都不好;到2G时,GSM和CDMA在解决语音通信方面达到极致;1998年提出的3G最初目标是解决多媒体通信(如视频通信),但2005年后出现移动互联网接入的重大应用需求,不过解决得不好;LTE对移动互联网接入需求的解决是到位的,但又面临语音通信(VoLTE)问题。

笔者认为,目前呈现的是“1G短、2G长、3G短、4G长”的特征,那5G呢?5G的目标是要解决万物互联,但目前还没有得到垂直行业(物联网、工业互联网等)的正面回应。因此,未来需求到底是什么?产业生态是什么?现在都只是通信技术专家们的设想,正如1998年提出的3G。因此,5G极有可能与3G类似,是一个相对短暂的一代。但有一点是肯定的,5G将是有探索价值的一代,是移动通信历史上迈向万物互联的承前启后的一代。

3、5G无线传输关键技术

从技术标准架构看,5G无线接入技术涉及帧结构、双工模式、波形、多址接入、编码调制、天线、接入控制协议等。大唐电信科技产业集团(以下简称大唐电信)在2013年发布了5G白皮书,随后我国IMT-2020(5G)推进组梳理了5G无线侧关键技术,主要有大规模多天线、新型多址接入、超密集组网、高频段通信、低时延高可靠物联网、灵活频谱共享、新型编码调制、新型多载波、M2M、D2D(device to device)、灵活双工、全双工共12项关键技术。

当前5G关键技术开始收敛。笔者认为:大规模多天线和新型多址接入技术可以提升频谱效率,构成“任何时间、任何地点”确保用户体验的关键技术;超密集组网和高频段通信技术可以提升热点流量和传输速率,基于LTE-Hi演进技术的能力提升;低时延高可靠物联网技术可以拓展业务应用范围,将成为5G物联网应用(如工业互联网、车联网)的关键使能技术。

3.1、大规模多天线

传统的无线传输技术主要是挖掘时域与频域资源,20世纪90年代,Turbo码的出现使信息传输速率几乎达到了香农极限。多天线技术将信号处理从时域和频域扩展到空间域,从而提高了无线频谱效率和传输可靠性。多天线技术经历了从无源到有源,从二维到三维,从高阶MIMO到大规模阵列天线的发展。

从香农信息论可知,从1G到3G,通过调制与编码等技术进步来提高信噪比实现容量提升的方法已接近极限,但MIMO技术可以在空间域上进一步有效地提高信噪比。理论上,MIMO系统容量与天线数成正比,即增加天线数可以线性地增加系统容量。当基站侧天线数远大于用户天线数时,基站到各个用户的信道将趋于正交。此时,用户间干扰将趋于消失,而巨大的阵列增益将有效地提升每个用户的信噪比,从而能在相同的时域和频域资源中共同调度更多用户。

随着关键技术的突破,特别是射频器件和天线等技术的进步,使多达100个以上天线端口的大规模多天线技术在5G应用成为可能,是目前业界公认为应对5G在系统容量、数据速率等方面挑战的标志技术之一。在实际应用中,通过使用大规模多天线阵列,基站可以在三维空间形成具有更高空间分辨率的高增益窄细波束,从而实现更灵活的空间复用能力和改善接收端接收信号,并且更窄波束可以大幅度降低用户间干扰,从而实现更高的系统容量和频谱利用效率。

大规模多天线技术在5G中的潜在应用场景包括宏覆盖、高层建筑、异构网络、室内外热点及无线回传链路等。在广域覆盖场景,大规模多天线技术可以利用现有频段;在热点覆盖或回传链路等场景中,则可以考虑使用更高频段。

当前,大规模多天线技术面临的挑战包括:基带运算的复杂度、处理时间和成本问题;信道测量性能和信道状态信息反馈的导频开销问题;相位噪声与校正问题等。主要研究方向包括:高效信号处理技术、信道建模及系统性能分析技术、信道状态信息获取技术、成形码本的设计、多用户调度与资源管理技术、大规模有源阵列天线技术、覆盖增强技术以及高速移动解决方案。

包括大唐电信在内的我国企业从TD-SCDMA开始,首次在全球将智能天线波束成形技术引入蜂窝移动通信系统,并且在TD-LTE中拓展到8天线多流波束成形技术,实现了波束成形与空间复用的深度融合,在国际上领先,且已经在全球商用,性能得到业界认可。目前大部分商用FDD LTE仍采用2天线(部分采用4天线)。在多天线技术方面,FDD落后于TDD。可见,TD-LTE的多天线多流波束成形技术成果为我国企业在5G大规模多天线及波束成形的技术研究、标准与产业上取得了先机。

3.2、5G新型多址接入技术:PDMA

多址接入技术是解决多用户进行信道复用的技术手段,是移动通信系统的基础性传输方式,关系到系统容量、小区构成、频谱和信道利用效率以及系统复杂性和部署成本,也关系到设备基带处理能力、射频性能和成本等工程问题。多址接入技术可以将信号维度按照时间、频率或码字分割为正交或者非正交的信道,分配给用户使用。历代移动通信系统都有其标志性的多址接入技术作为其革新换代的标志。例如:1G的模拟频分多址接入(FDMA)技术;2G的时分多址接入(TDMA)和频分多址接入(FDMA)技术;3G的码分多址接入(CDMA)技术;4G的正交频分复用(OFDM)技术。1G到4G采用的都是正交多址接入技术。对于正交多址接入,用户在发送端占用正交的无线资源,接收端易于使用线性接收机来进行多用户检测,复杂度较低,但系统容量会受限于可分割的正交资源数目。从单用户信息论角度,LTE的单链路性能已接近点对点信道容量,提升空间十分有限;若从多用户信息论角度,非正交多址技术还能进一步提高频谱效率,也是逼近多用户信道容量上界的有效手段。

因此,若继续采用传统的正交多址接入技术,难以实现5G需要支持的大容量和海量连接数。理论上,非正交多址接入将突破正交多址接入的容量极限,能够依据多用户复用倍数来成倍地提升系统容量。非正交多址接入需要在接收端引入非线性检测来区分用户,得益于器件和集成电路的进步,目前非正交已经从理论研究走向实际应用。

图样分割多址接入(pattern division multiple access,PDMA)技术,是大唐电信在早期SAMA(SIC amenable multiple access)研究基础上提出的一种新型非正交多址接入技术,它采用发送端与接收端联合优化设计的思想,将多个用户的信号通过PDMA编码图样映射到相同的时域、频域和空域资源进行复用叠加传输,这样可以大幅度地提升用户接入数量。接收端利用广义串行干扰删除算法实现准最优多用户检测,逼近多用户信道容量界,实现通信系统的整体性能最优。PDMA技术可以应用于通信系统的上行链路和下行链路,能够提升移动宽带应用的频谱效率和系统容量,支持5G海量物联网终端接入。PDMA技术自提出就受到了业界的广泛关注,2014年,PDMA技术被写入ITU的新技术报告IMT.Trend。

(编辑:应用网_丽江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读