杨强:深度学习是富人的游戏 我要颠覆它
如果用了迁移学习,我刚才讲一个副产品就是从很多人的大数据迁移到一个人的小数据上,这样可以达到一个效果,比方说我们仅用一个用户的九个对话来训练这样的一个迁移学习的效果,从一个三万人得到的大模型迁移到一个人的小模型身上,这个效果在强化学习的基础上做起来就特别地得心应手,因为强化学习就使得我们能够把迁移的结果变成短路,就好像是在电路当中的短路,使得我们能够不用很烦琐的去问用户很多同样的问题。 这里我给大家也展示一个例子。 对,刚刚有几个部分,其实系统都没有具体地去问答案,它基本上就在问还是上一次那个答案吗?还是送到你家吗?这样就节省了很多,所以就是这样。 最后我就来再总结一下,就是我刚刚讲的这几个必要条件,刚才我是通过第一个例子谷歌Deepmine,第二个是强化迁移学习,就是三层的结构,同时我讲了具有通用性、个性化的学习。这里我要再次强调一下我们总结的几个条件:一个是要有清晰边界的问题定义,一定要有持续不断的外部反馈,要有足够的计算资源、要有顶尖的数据科学家还要有足够质量的大数据。 我的讲演到此结束,谢谢大家! (编辑:应用网_丽江站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |