加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_丽江站长网 (http://www.0888zz.com/)- 科技、建站、数据工具、云上网络、机器学习!
当前位置: 首页 > 站长资讯 > 评论 > 正文

AlphaGo是如何下棋的?

发布时间:2016-03-12 03:31:12 所属栏目:评论 来源:知乎网
导读:谷歌DeepMind宣布他们研发的神经网络围棋AI,AlphaGo,在2015年10月首次5:0战胜了人类职业选手欧洲围棋冠军Fan Hui二段。这篇论文由David Silver等完成。里面的技术是出于

这里做了三个版本的落子选择大脑,加上局面评估大脑,AlphaGo可以有效去阅读未来走法和步骤了。阅读跟大多数围棋AI一样,通过蒙特卡洛树搜索(MCTS)算法来完成。但AlphaGo 比其他AI都要聪明,能够更加智能的猜测哪个变种去探测,需要多深去探测。

AlphaGo怎么下棋 AlphaGo李世石 AlphaGo棋谱 AlphaGo下载 AlphaGo李世石直播

蒙特卡洛树搜索算法

如果拥有无限的计算能力,MCTS可以理论上去计算最佳落子通过探索每一局的可能步骤。但未来走法的搜索空间对于围棋来说太大了(大到比我们认知宇宙里的粒子还多),实际上AI没有办法探索每一个可能的变种。MCTS做法比其他AI有多好的原因是在识别有利的变种,这样可以跳过一些不利的。

Silver团队让AlphaGo装上MCTS系统的模块,这种框架让设计者去嵌入不同的功能去评估变种。最后马力全开的AlphaGo系统按如下方式使用了所有这些大脑。

1. 从当前的棋盘布局,选择哪些下一步的可能性。他们用基础的落子选择器大脑(他们尝试使用更强的版本,但事实上让AlphaGo更弱,因为这没有让MCTS提供更广阔的选择空间)。它集中在“明显最好”的落子而不是阅读很多,而不是再去选择也许对后来有利的下法。

2. 对于每一个可能的落子,评估质量有两种方式:要么用棋盘上局面评估器在落子后,要么运行更深入蒙特卡罗模拟器(滚动)去思考未来的落子,使用快速阅读的落子选择器去提高搜索速度。AlphaGo使用简单参数,“混合相关系数”,将每一个猜测取权重。最大马力的AlphaGo使用 50/50的混合比,使用局面评估器和模拟化滚动去做平衡判断。

这篇论文包含一个随着他们使用插件的不同,AlphaGo的能力变化和上述步骤的模拟。仅使用独立大脑,AlphaGo跟最好的计算机围棋AI差不多强,但当使用这些综合手段,就可能到达职业人类选手水平。

AlphaGo怎么下棋 AlphaGo李世石 AlphaGo棋谱 AlphaGo下载 AlphaGo李世石直播

AlphaGo的能力变化与MCTS的插件是否使用有关

这篇论文还详细讲了一些工程优化:分布式计算,网络计算机去提升MCTS速度,但这些都没有改变基础算法。这些算法部中分精确,部分近似。在特别情况下,AlphaGo通过更强的计算能力变的更强,但计算单元的提升率随着性能变强而减缓。

优势和劣势

我认为AlphaGo在小规模战术上会非常厉害。它知道通过很多位置和类型找到人类最好的下法,所以不会在给定小范围的战术条件下犯明显错误。

但是,AlphaGo有个弱点在全局判断上。它看到棋盘式通过5*5金字塔似的过滤,这样对于集成战术小块变成战略整体上带来麻烦,同样道理,图片分类神经网络往往对包含一个东西和另一个的搞不清。比如说围棋在角落上一个定式造成一个墙或者引征,这会剧烈改变另一个角上的位置估值。

就像其他的基于MCTS的AI, AlphaGo对于需要很深入阅读才能解决的大势判断上,还是麻烦重重的,比如说大龙生死劫。AlphaGo 对一些故意看起来正常的局也会失去判断,天元开盘或者少见的定式,因为很多训练是基于人类的棋局库。

我还是很期待看到AlphaGo和李世石9段的对决!我预测是:如果李使用定式,就像跟其他职业棋手的对决,他可能会输,但如果他让AlphaGo陷入到不熟悉情形下,他可能就赢。

(编辑:应用网_丽江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

推荐文章
    热点阅读