加入收藏 | 设为首页 | 会员中心 | 我要投稿 应用网_丽江站长网 (http://www.0888zz.com/)- 科技、建站、数据工具、云上网络、机器学习!
当前位置: 首页 > 运营中心 > 产品 > 正文

数据驱动的Growth Hacking正确姿势解析!

发布时间:2016-03-24 06:54:46 所属栏目:产品 来源:鸟哥笔记
导读:一旦你深入到了用户生命周期各个部分的细节中去,你就能像一个黑客一样去设定你的增长策略,以达到真正的Growth。要实践真正的Growth Hacking,必须以有效的数据作为支撑,

这同样没有固定的成功公式,你必须通过「用户分群」来针对不同的可能性做实验。在我们这个例子中,你将会看到,当你对比「所有新增用户」与「关注过一个人的用户」的次日留存时会发现什么:

数据驱动的Growth Hacking正确姿势解析!

次日留存有了30%多的跳跃,非常棒是吗?但是如果这些用户都是在第2天、第3天才开始流失呢?

有一件关于移动应用的事实:用户会非常快的流失,实际上平均下来,移动应用70%的用户会在一天后流失,但那些非常优秀的应用的这个值只有30%。但是,在安装应用后的第3天开始,再往后,流失速率会趋于稳定:所有应用会以同样的流失速率失去他们的用户。

所以问题的关键就在你如何在用户安装之后立刻留住用户,如果你能在一开始粘住他们,你基本就能保留他们一段时间。

这是我们例子中「所有用户」与「关注过一个人的用户」在7天里的留存情况对比:

数据驱动的Growth Hacking正确姿势解析!

在30天后,「关注过一个人的用户」的留存率是17.5%,「所有用户」的是10.9%。这可能看起来不是那么显著,但在长期留存上,即便是一个小凸起,对你来说也是意义重大。

更为重要的是,你已经识别出了一个提高留存的因素,现在你可以寻找更多。一个可行的方法是,你现在可以把「关注一个人」不是「注册」设为起点。也就是说,你之前分析的是「注册」之后的留存情况,而下一步,你可以分析「关注一个人」之后的留存情况。这就是在你重新设计了引导流程以促进用户关注他人之后,接下来你应该努力提升什么。

然后,你可以看到其它因素是怎样促进留存的,比如,你可以比较「播放了三个视频的用户」与「全部用户」,比较两个用户群在「关注了一个人」后的留存情况。

当你搞清楚了哪些行为导致你的用户继续回来使用你的产品之后,你就需要把这些行为的用户体验放在首位。在早期粘住你的用户,他们就会很难离开你的产品。

正确的使用 AARRR 模型,并不是换了一组更好的数字,而是完全不同的数字。这些数字向你展示着人们如何使用你的产品,是什么让他们离开,是什么让他们离下来,是什么让他们大呼过瘾。

换句话说,有什么不是数字呢。

本文为沈豫龙Alan,诸葛io产品经理原创投稿鸟哥笔记,转载请注明来源,并附上作者信息。

(编辑:应用网_丽江站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

热点阅读